资源类型

期刊论文 80

会议视频 3

年份

2023 11

2022 8

2021 8

2020 4

2019 4

2018 5

2017 2

2016 7

2015 3

2014 3

2013 2

2012 2

2011 1

2010 3

2009 2

2008 7

2007 6

2000 2

1999 1

展开 ︾

关键词

CD44 1

不确定性分析 1

中子俘获疗法 1

中药 1

临床试治 1

交错缠绕 1

代谢组学 1

优快钻井 1

保险费 1

信息-知识-智能的统一理论 1

催化剂活化 1

全双层结构 1

农业科学 1

前沿技术与中医药创新发展 1

医学 1

医院中子照射器 1

卡特里娜飓风 1

压力容器技术 1

原位谱学 1

展开 ︾

检索范围:

排序: 展示方式:

Leaching of aluminum from coal spoil by mechanothermal activation

Xiaoxue SUN,Yuzhu SUN,Jianguo YU

《化学科学与工程前沿(英文)》 2015年 第9卷 第2期   页码 216-223 doi: 10.1007/s11705-015-1518-2

摘要: The process of activating coal spoil (CS) in order to recover aluminum as a high value product was investigated. The CS was first characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD) and thermogravimetric analysis-differential scanning calorimetry (TGA-DSC) in order to determine the chemical and mineral compositions of the CS. Then a mechanothermal activation method was adopted to increase the aluminum activity in the coal spoil. Over 95% of the aluminum in the CS could be extracted using this activation method. The mechanothermal activation process promoted the destruction of kaolinite structures and hindered the formation of amorphous -Al O . This resulted in a high aluminum leaching activity in the mechanothermally activated CS.

关键词: coal spoil     mechanothermal compound activation     leaching    

Steam reforming of toluene as a tar model compound with modified nickel-based catalyst

Omeralfaroug KHALIFA, Mingxin XU, Rongjun ZHANG, Tahir IQBAL, Mingfeng LI, Qiang LU

《能源前沿(英文)》 2022年 第16卷 第3期   页码 492-501 doi: 10.1007/s11708-021-0721-8

摘要: Catalytic steam reforming is a promising route for tar conversion to high energy syngas in the process of biomass gasification. However, the catalyst deactivation caused by the deposition of residual carbon is still a major challenge. In this paper, a modified Ni-based Ni-Co/Al O -CaO (Ni-Co/AC) catalyst and a conventional Ni/Al O (Ni/A) catalyst were prepared and tested for tar catalytic removal in which toluene was selected as the model component. Experiments were conducted to reveal the influences of the reaction temperature and the ratio between steam to carbon on the toluene conversion and the hydrogen yield. The physicochemical properties of the modified Ni-based catalyst were determined by a series of characterization methods. The results indicated that the Ni-Co alloy was determined over the Ni-Co/AC catalyst. The doping of CaO and the presence of Ni-Co alloy promoted the performance of toluene catalytic dissociation over Ni-Co/AC catalyst compared with that over Ni/A catalyst. After testing in steam for 40 h, the carbon conversion over Ni-Co/AC maintained above 86% and its resistance to carbon deposition was superior to Ni/A catalyst.

关键词: catalytic steam reforming     tar model compound     Ni-based catalyst     carbon resistance    

Enhanced activation of peroxymonosulfate by CNT-TiO

Xuemin Hao, Guanlong Wang, Shuo Chen, Hongtao Yu, Xie Quan

《环境科学与工程前沿(英文)》 2019年 第13卷 第5期 doi: 10.1007/s11783-019-1161-0

摘要: CNT-TiO2 composite is used to activate PMS under UV-light assistance. Superior performance is due to the enhanced electron-transfer ability of CNT. SO4•−, •OH and 1O2 play key roles in the degradation of organic pollutants. In this work, a UV-light assisted peroxymonosulfate (PMS) activation system was constructed with the composite catalyst of multi-walled carbon nanotubes (CNT) - titanium dioxide (TiO2). Under the UV light irradiation, the photoinduced electrons generated from TiO2 could be continuously transferred to CNT for the activation of PMS to improve the catalytic performance of organic pollutant degradation. Meanwhile, the separation of photoinduced electron-hole pairs could enhance the photocatalysis efficiency. The electron spin resonance spectroscopy (EPR) and quenching experiments confirmed the generation of sulfate radical (SO4•−), hydroxyl radical (•OH) and singlet oxygen (1O2) in the UV/PMS/20%CNT-TiO2 system. Almost 100% phenol degradation was observed within 20 min UV-light irradiation. The kinetic reaction rate constant of the UV/PMS/20%CNT-TiO2 system (0.18 min−1) was 23.7 times higher than that of the PMS/Co3O4 system (0.0076 min−1). This higher catalytic performance was ascribed to the introduction of photoinduced electrons, which could enhance the activation of PMS by the transfer of electrons in the UV/PMS/CNT-TiO2 system.

关键词: Peroxymonosulfate activation     Carbon nanotubes     TiO2     Water treatment    

Shear stress distribution prediction in symmetric compound channels using data mining and machine learning

Zohreh SHEIKH KHOZANI, Khabat KHOSRAVI, Mohammadamin TORABI, Amir MOSAVI, Bahram REZAEI, Timon RABCZUK

《结构与土木工程前沿(英文)》 2020年 第14卷 第5期   页码 1097-1109 doi: 10.1007/s11709-020-0634-3

摘要: Shear stress distribution prediction in open channels is of utmost importance in hydraulic structural engineering as it directly affects the design of stable channels. In this study, at first, a series of experimental tests were conducted to assess the shear stress distribution in prismatic compound channels. The shear stress values around the whole wetted perimeter were measured in the compound channel with different floodplain widths also in different flow depths in subcritical and supercritical conditions. A set of, data mining and machine learning algorithms including Random Forest (RF), M5P, Random Committee, KStar and Additive Regression implemented on attained data to predict the shear stress distribution in the compound channel. Results indicated among these five models; RF method indicated the most precise results with the highest value of 0.9. Finally, the most powerful data mining method which studied in this research compared with two well-known analytical models of Shiono and Knight method (SKM) and Shannon method to acquire the proposed model functioning in predicting the shear stress distribution. The results showed that the RF model has the best prediction performance compared to SKM and Shannon models.

关键词: compound channel     machine learning     SKM model     shear stress distribution     data mining models    

Hierarchical porous carbon derived from one-step self-activation of zinc gluconate for symmetric supercapacitors

《化学科学与工程前沿(英文)》 2023年 第17卷 第4期   页码 387-394 doi: 10.1007/s11705-022-2250-3

摘要: Porous carbons with high specific area surfaces are promising electrode materials for supercapacitors. However, their production usually involves complex, time-consuming, and corrosive processes. Hence, a straightforward and effective strategy is presented for producing highly porous carbons via a self-activation procedure utilizing zinc gluconate as the precursor. The volatile nature of zinc at high temperatures gives the carbons a large specific surface area and an abundance of mesopores, which avoids the use of additional activators and templates. Consequently, the obtained porous carbon electrode delivers a satisfactory specific capacitance and outstanding cycling durability of 90.9% after 50000 cycles at 10 A∙g–1. The symmetric supercapacitors assembled by the optimal electrodes exhibit an acceptable rate capability and a distinguished cycling stability in both aqueous and ionic liquid electrolytes. Accordingly, capacitance retention rates of 77.8% and 85.7% are achieved after 50000 cycles in aqueous alkaline electrolyte and 10000 cycles in ionic liquid electrolyte. Moreover, the symmetric supercapacitors deliver high energy/power densities of 49.8 W∙h∙kg–1/2477.8 W∙kg–1 in the Et4NBF4 electrolyte, outperforming the majority of previously reported porous carbon-based symmetric supercapacitors in ionic liquid electrolytes.

关键词: self-activation     zinc organic salts     abundant mesopores     symmetric supercapacitor     liquid electrolyte    

Enhanced performance of oxygen vacancies on CO adsorption and activation over different phases of ZrO

《能源前沿(英文)》 2023年 第17卷 第4期   页码 545-554 doi: 10.1007/s11708-023-0867-7

摘要: The effect of oxygen vacancies on the adsorption and activation of CO2 on the surface of different phases of ZrO2 is investigated by density functional theory (DFT) calculations. The calculations show that the oxygen vacancies contribute greatly to both the adsorption and activation of CO2. The adsorption energy of CO2 on the c-ZrO2, t-ZrO2 and, m-ZrO2 surfaces is enhanced to 5, 4, and 3 folds with the help of oxygen vacancies, respectively. Moreover, the energy barrier of CO2 dissociation on the defective surfaces of c-ZrO2, t-ZrO2, and m-ZrO2 is reduced to 1/2, 1/4, and 1/5 of the perfect surface with the assistance of oxygen vacancies. Furthermore, the activation of CO2 on the ZrO2 surface where oxygen vacancies are present, and changes from an endothermic reaction to an exothermic reaction. This finding demonstrates that the presence of oxygen vacancies promotes the activation of CO2 both kinetically and thermodynamically. These results could provide guidance for the high-efficient utilization of CO2 at an atomic scale.

关键词: CO2 activation     oxygen vacancies     ZrO2     different phases    

R158Q and G212S, novel pathogenic compound heterozygous variants in of Gitelman syndrome

《医学前沿(英文)》 2022年 第16卷 第6期   页码 932-945 doi: 10.1007/s11684-022-0963-9

摘要: The dysfunction of Na+-Cl cotransporter (NCC) caused by mutations in solute carrier family12, member 3 gene (SLC12A3) primarily causes Gitelman syndrome (GS). In identifying the pathogenicity of R158Q and G212S variants of SLC12A3, we evaluated the pathogenicity by bioinformatic, expression, and localization analysis of two variants from a patient in our cohort. The prediction of mutant protein showed that p.R158Q and p.G212S could alter protein’s three-dimensional structure. Western blot showed a decrease of mutant Ncc. Immunofluorescence of the two mutations revealed a diffuse positive staining below the plasma membrane. Meanwhile, we conducted a compound heterozygous model—Ncc R156Q/G210S mice corresponding to human NCC R158Q/G212S. NccR156Q/G210S mice clearly exhibited typical GS features, including hypokalemia, hypomagnesemia, and increased fractional excretion of K+ and Mg2+ with a normal blood pressure level, which made NccR156Q/G210S mice an optimal mouse model for further study of GS. A dramatic decrease and abnormal localization of the mutant Ncc in distal convoluted tubules contributed to the phenotype. The hydrochlorothiazide test showed a loss of function of mutant Ncc in NccR156Q/G210S mice. These findings indicated that R158Q and G212S variants of SLC12A3 were pathogenic variants of GS.

关键词: Gitelman syndrome     mouse model     compound heterozygous     hypokalemia     Slc12a3    

A density functional theory study of methane activation on MgO supported NiM cluster: role of M on C–Hactivation

《化学科学与工程前沿(英文)》 2022年 第16卷 第10期   页码 1485-1492 doi: 10.1007/s11705-022-2169-8

摘要: Methane activation is a pivotal step in the application of natural gas converting into high-value added chemicals via methane steam/dry reforming reactions. Ni element was found to be the most widely used catalyst. In present work, methane activation on MgO supported Ni–M (M = Fe, Co, Cu, Pd, Pt) cluster was explored through detailed density functional theory calculations, compared to pure Ni cluster. CH4 adsorption on Cu promoted Ni cluster requires overcoming an energy of 0.07 eV, indicating that it is slightly endothermic and unfavored to occur, while the adsorption energies of other promoters M (M = Fe, Co, Pd and Pt) are all higher than that of pure Ni cluster. The role of M on the first C–H bond cleavage of CH4 was investigated. Doping elements of the same period in Ni cluster, such as Fe, Co and Cu, for C–H bond activation follows the trend of the decrease of metal atom radius. As a result, Ni–Fe shows the best ability for C–H bond cleavage. In addition, doping the elements of the same family, like Pd and Pt, for CH4 activation is according to the increase of metal atom radius. Consequently, C–H bond activation demands a lower energy barrier on Ni–Pt cluster. To illustrate the adsorptive dissociation behaviors of CH4 at different Ni–M clusters, the Mulliken atomic charge was analyzed. In general, the electron gain of CH4 binding at different Ni–M clusters follows the sequence of Ni–Cu (–0.02 e) < Ni (–0.04 e) < Ni–Pd (–0.08 e) < Ni–Pt (–0.09 e) < Ni–Co (–0.10 e) < Ni–Fe (–0.12 e), and the binding strength between catalysts and CH 4 raises with the CH4 electron gain increasing. This work provides insights into understanding the role of promoter metal M on thermal-catalytic activation of CH4 over Ni/MgO catalysts, and is useful to interpret the reaction at an atomic scale.

关键词: CH4 dissociation     Ni–M     C–H bond activation     charge transfer    

A compound load simulator based on zero-torsion parallel mechanisms

Jingjun YU, Wei LI, Xu PEI, Shusheng BI, Guanghua ZONG

《机械工程前沿(英文)》 2012年 第7卷 第1期   页码 1-4 doi: 10.1007/s11465-012-0306-7

Optimal dynamic emergency reserve activation using spinning, hydro and demand-side reserves

S. Surender REDDY,P. R. BIJWE,A. R. ABHYANKAR

《能源前沿(英文)》 2016年 第10卷 第4期   页码 409-423 doi: 10.1007/s11708-016-0431-9

摘要: This paper proposes an optimal dynamic reserve activation plan after the occurrence of an emergency situation (generator/transmission line outage, load increase or both). An optimal plan is developed to handle the emergency, using the coordinated action of fast and slow reserves, for secure operation with minimum overall cost. It considers the reserves supplied by the conventional thermal generators (spinning reserves), hydro power units and load demands (demand-side reserves). The optimal backing down of costly/fast reserves and bringing up of slow reserves in each sub-interval in an integrated manner is proposed. The proposed reserve activation approaches are solved using the genetic algorithm, and some of the simulation results are also compared using the Matlab optimization toolbox and the general algebraic modeling system (GAMS) software. The simulation studies are performed on the IEEE 30, 57 and 300 bus test systems. These results demonstrate the advantage of the proposed integrated/dynamic reserve activation plan over the conventional/sequential approach.

关键词: demand-side reserves     dynamic reserve activation approach     hydro power units     post contingency     sequential reserve activation approach     spinning reserves    

Tumor-derived exosomes induce initial activation by exosomal CD19 antigen but impair the function of

《医学前沿(英文)》 doi: 10.1007/s11684-023-1010-1

摘要: Tumor-derived exosomes induce initial activation by exosomal CD19 antigen but impair the function of CD19-specific CAR T-cells via TGF-β signaling

关键词: exosomes induce activation     impair function CD19     exosomal CD19 antigen    

Coronary leukocyte activation in relation to progression of coronary artery disease

null

《医学前沿(英文)》 2016年 第10卷 第1期   页码 85-90 doi: 10.1007/s11684-016-0435-1

摘要:

Leukocyte activation has been linked to atherogenesis, but there is little in vivo evidence for its role in the progression of atherosclerosis. We evaluated the predictive value for progression of coronary artery disease (CAD) of leukocyte activation markers in the coronary circulation. Monocyte and neutrophil CD11b, neutrophil CD66b expression and intracellular neutrophil myeloperoxidase (MPO) in the coronary arteries were determined by flow cytometry in patients undergoing coronary angiography. The primary outcome included fatal and nonfatal myocardial infarction or arterial vascular intervention due to unstable angina pectoris. In total 99 subjects who were included, 70 had CAD at inclusion (26 patients had single-vessel disease, 18 patients had two-vessel disease and 26 patients had three-vessel disease). The median follow-up duration was 2242 days (interquartile range: 2142–2358). During follow-up, 13 patients (13%) developed progression of CAD. Monocyte CD11b, neutrophil CD11b and CD66b expression and intracellular MPO measured in blood obtained from the coronary arteries were not associated with the progression of CAD. These data indicate that coronary monocyte CD11b, neutrophil CD11b and CD66b expression and intracellular MPO do not predict the risk of progression of CAD.

关键词: coronary artery disease     inflammation     integrin     myeloperoxidase     leukocyte activation    

NETO2 promotes melanoma progression via activation of the Ca/CaMKII signaling pathway

《医学前沿(英文)》 2023年 第17卷 第2期   页码 263-274 doi: 10.1007/s11684-022-0935-0

摘要: Melanoma is the most aggressive cutaneous tumor. Neuropilin and tolloid-like 2 (NETO2) is closely related to tumorigenesis. However, the functional significance of NETO2 in melanoma progression remains unclear. Herein, we found that NETO2 expression was augmented in melanoma clinical tissues and associated with poor prognosis in melanoma patients. Disrupting NETO2 expression markedly inhibited melanoma proliferation, malignant growth, migration, and invasion by downregulating the levels of calcium ions (Ca2+) and the expression of key genes involved in the calcium signaling pathway. By contrast, NETO2 overexpression had the opposite effects. Importantly, pharmacological inhibition of CaMKII/CREB activity with the CaMKII inhibitor KN93 suppressed NETO2-induced proliferation and melanoma metastasis. Overall, this study uncovered the crucial role of NETO2-mediated regulation in melanoma progression, indicating that targeting NETO2 may effectively improve melanoma treatment.

关键词: melanoma     neuropilin and tolloid-like 2     Ca2+/CaMKII signaling pathway    

Insights into the electron transfer mechanisms of permanganate activation by carbon nanotube membrane

《环境科学与工程前沿(英文)》 2023年 第17卷 第9期 doi: 10.1007/s11783-023-1706-0

摘要:

● A CNT filter enabled effective KMnO4 activation via facilitated electron transfer.

关键词: KMnO4     Carbon nanotubes     Non-radical pathway     Electron transfer     Water treatment    

Engineering practice of mechanical soil aeration for the remediation of volatile organic compound-contaminated

Yan Ma, Xiaoming Du, Yi Shi, Deyi Hou, Binbin Dong, Zhu Xu, Huiying Li, Yunfeng Xie, Jidun Fang, Zheng Li, Yunzhe Cao, Qingbao Gu, Fasheng Li

《环境科学与工程前沿(英文)》 2016年 第10卷 第6期 doi: 10.1007/s11783-016-0870-x

摘要: Engineering practice of mechanical soil aeration in China is reviewed. MSA is a cost-effective technique for VOC-contaminated sites. Limitations of MSA application have been summarized. In recent years, many industrial enterprises located in the urban centers of China have been relocated owing to the rapid increase in urban development. At the sites abandoned by these enterprises, volatile organic compounds have frequently been detected, sometimes at high concentrations, particularly at sites abandoned by chemical manufacturing enterprises. With the redevelopment of sites and changes in land-use type associated with these sites, substantial amounts of contaminated soils now require remediation. Since China is a developing country, soil remediation warrants the usage of techniques that are suitable for addressing the unique challenges faced in this country. Land shortage is a common problem in China; the large numbers of contaminated sites, tight development schedules, and limited financial resources necessitate the development of cost-effective methods for land reclamation. Mechanical soil aeration is a simple, effective, and low-cost soil remediation technique that is particularly suitable for the remediation of large volatile organic compound-contaminated sites. Its effectiveness has been confirmed by conducting laboratory studies, pilot tests, and full-scale projects. This study reviews current engineering practice and developmental trends of mechanical soil aeration and analyzes the advantages and disadvantages of this technology for application in China as an emerging soil remediation market. The findings of this study might aid technology development in China, as well as assist other developing countries in the assessment and implementation of cost-effective hazardous waste site soil remediation programs.

关键词: Soil contamination     Volatile organic compound     Mechanical soil aeration     Engineering practice     China    

标题 作者 时间 类型 操作

Leaching of aluminum from coal spoil by mechanothermal activation

Xiaoxue SUN,Yuzhu SUN,Jianguo YU

期刊论文

Steam reforming of toluene as a tar model compound with modified nickel-based catalyst

Omeralfaroug KHALIFA, Mingxin XU, Rongjun ZHANG, Tahir IQBAL, Mingfeng LI, Qiang LU

期刊论文

Enhanced activation of peroxymonosulfate by CNT-TiO

Xuemin Hao, Guanlong Wang, Shuo Chen, Hongtao Yu, Xie Quan

期刊论文

Shear stress distribution prediction in symmetric compound channels using data mining and machine learning

Zohreh SHEIKH KHOZANI, Khabat KHOSRAVI, Mohammadamin TORABI, Amir MOSAVI, Bahram REZAEI, Timon RABCZUK

期刊论文

Hierarchical porous carbon derived from one-step self-activation of zinc gluconate for symmetric supercapacitors

期刊论文

Enhanced performance of oxygen vacancies on CO adsorption and activation over different phases of ZrO

期刊论文

R158Q and G212S, novel pathogenic compound heterozygous variants in of Gitelman syndrome

期刊论文

A density functional theory study of methane activation on MgO supported NiM cluster: role of M on C–Hactivation

期刊论文

A compound load simulator based on zero-torsion parallel mechanisms

Jingjun YU, Wei LI, Xu PEI, Shusheng BI, Guanghua ZONG

期刊论文

Optimal dynamic emergency reserve activation using spinning, hydro and demand-side reserves

S. Surender REDDY,P. R. BIJWE,A. R. ABHYANKAR

期刊论文

Tumor-derived exosomes induce initial activation by exosomal CD19 antigen but impair the function of

期刊论文

Coronary leukocyte activation in relation to progression of coronary artery disease

null

期刊论文

NETO2 promotes melanoma progression via activation of the Ca/CaMKII signaling pathway

期刊论文

Insights into the electron transfer mechanisms of permanganate activation by carbon nanotube membrane

期刊论文

Engineering practice of mechanical soil aeration for the remediation of volatile organic compound-contaminated

Yan Ma, Xiaoming Du, Yi Shi, Deyi Hou, Binbin Dong, Zhu Xu, Huiying Li, Yunfeng Xie, Jidun Fang, Zheng Li, Yunzhe Cao, Qingbao Gu, Fasheng Li

期刊论文